论文地址:Convolutions are competitive with transformers for protein sequence pretraining
论文实现:https://github.com/microsoft/protein-sequence-models/tree/main
CARP: 卷积掩码网络预训练蛋白质语言模型
Abstract
CNN能和transformer取得具有竞争力的结果,在很多下游任务上比如结构预测,zero-shot突变预测,out-of-domain生成上都取得很好效果
Introduction and backgroud
Transformer的主要问题是计算内存和输入序列成平方关系的复杂度增长,并且在训练的时候有着明显的长度限制,比如ESM最大长度1022,但Uniref50有42M序列,其中有1.1M,即2.6%是超过了1022,并且里面包含了很多人类感兴趣的蛋白,比如SARS-Cov-2 spike gylcoprotein和Streptococcus pyogenes CRISPR-associated endonuclease Cas9
使用March 2020 release of UniRef50训练了CARP(Convolutional Autoencoding Representations of Proteins)
Convolutional Protein Seuqence Mask Language Models

15%mask,其中80%替换为mask token,10%随机选择氨基酸,10%不变

Downstream Tasks
Protein Structure

Zero-shot Mutation Effect Prediction

Out-of-Domain Fitness Prediction

In-Domain Property Prediction
