Yang Tan

Master Student @ECUST

Shanghai, China
  • Home
  • Blogs
  • Archives
  • Categories
  • Tags
  • Repository
  • Links

Board

Bioinformation (BI)
Computation and Language (CL)
Software Engineering (SE)
Computer Vision (CV)
Information Retrieval (IR)
Operating System (OS)

Categories

  • BlogNote2
  • BookNote1
  • DeepLearning2
  • MIT-molecular biology1
  • MeetingNote1
  • PaperNote233
  • stanford-cs329p27

Tags

  • BI69
  • CL97
  • CV62
  • GNN4
  • IR6
  • OS5
  • SE55
  • cs.GNN4
  • cs.Meta1
  • logic1
  • other3
  • pytorch1

Tag Cloud

BI CL CV GNN IR OS SE cs.GNN cs.Meta logic other pytorch

Archive

  • June 20251
  • May 20252
  • April 20253
  • March 20253
  • February 20253
  • January 20257
  • November 20241
  • October 20241
  • August 20241
  • July 20243
  • June 20242
  • May 20241
  • April 20243
  • February 20243
  • January 20242
  • December 20232
  • November 20235
  • September 20234
  • August 20234
  • July 20231
  • June 20232
  • May 20232
  • April 20231
  • March 20238
  • February 20233
  • January 20238
  • December 20227
  • November 202210
  • October 202211
  • September 202217
  • August 20228
  • July 202212
  • June 202225
  • May 202215
  • April 202218
  • March 202214
  • February 202217
  • January 202216
  • December 202112
  • November 20219

Recent Posts

  • PaperNote

    Movie Gen:A Cast of Media Foundation Models

    2025-06-05

  • PaperNote

    NeurIPSw-2024 Mixture of Experts Enable Efficient and Effective Protein Understanding and Design

    2025-05-26

  • PaperNote

    NeurIPS-2023 Predicting a Protein’s Stability under a Million Mutations

    2025-05-23

  • PaperNote

    Scaling unlocks broader generation and deeper functional understanding of proteins

    2025-04-19

  • PaperNote

    Prot42:a Novel Family of Protein Language Models for Target-aware Protein Binder Generation

    2025-04-10

ACL-2022 Impact of Evaluation Methodologies on Code Summarization

Jun 6 PaperNote CL, SE Comments Word Count: 717(words) Read Count: 2(minutes)

ICPC-2018 Deep code comment generation

Jun 6 PaperNote CL, SE Comments Word Count: 448(words) Read Count: 1(minutes)

4.3 模型验证【stanford-cs329p】

Jun 6 stanford-cs329p Comments Word Count: 556(words) Read Count: 1(minutes)

4.2 过拟合和欠拟合【stanford-cs329p】

Jun 6 stanford-cs329p Comments Word Count: 562(words) Read Count: 1(minutes)

GTC-2020 Megatron-LM:Training Multi-Billion Parameter Language Models Using Model Parallelism

Jun 4 PaperNote OS Comments Word Count: 848(words) Read Count: 3(minutes)

NIPS-2019 GPipe:Efficient Training of Giant Neural Networks using Pipeline Parallelism

Jun 3 PaperNote OS Comments Word Count: 1.5k(words) Read Count: 5(minutes)

4.1 模型评估【stanford-cs329p】

May 14 stanford-cs329p Comments Word Count: 813(words) Read Count: 2(minutes)

3.7 循环神经网络【stanford-cs329p】

May 13 stanford-cs329p Comments Word Count: 478(words) Read Count: 1(minutes)

EMNLP-2021 Rethinking Data Augmentation for Low-Resource Neural Machine Translation:A Multi-Task Learning Approach

May 12 PaperNote CL Comments Word Count: 849(words) Read Count: 2(minutes)

3.6 卷积神经网络【stanford-cs329p】

May 12 stanford-cs329p Comments Word Count: 560(words) Read Count: 2(minutes)

  • Prev
  • Next
Page 17 of 27
Theme by cofess base on pure.