Yang Tan

Master Student @ECUST

Shanghai, China
  • Home
  • Blogs
  • Archives
  • Categories
  • Tags
  • Repository
  • Links

Board

Bioinformation (BI)
Computation and Language (CL)
Software Engineering (SE)
Computer Vision (CV)
Information Retrieval (IR)
Operating System (OS)

Categories

  • BlogNote2
  • BookNote1
  • DeepLearning2
  • MIT-molecular biology1
  • MeetingNote1
  • PaperNote233
  • stanford-cs329p27

Tags

  • BI69
  • CL97
  • CV62
  • GNN4
  • IR6
  • OS5
  • SE55
  • cs.GNN4
  • cs.Meta1
  • logic1
  • other3
  • pytorch1

Tag Cloud

BI CL CV GNN IR OS SE cs.GNN cs.Meta logic other pytorch

Archive

  • June 20251
  • May 20252
  • April 20253
  • March 20253
  • February 20253
  • January 20257
  • November 20241
  • October 20241
  • August 20241
  • July 20243
  • June 20242
  • May 20241
  • April 20243
  • February 20243
  • January 20242
  • December 20232
  • November 20235
  • September 20234
  • August 20234
  • July 20231
  • June 20232
  • May 20232
  • April 20231
  • March 20238
  • February 20233
  • January 20238
  • December 20227
  • November 202210
  • October 202211
  • September 202217
  • August 20228
  • July 202212
  • June 202225
  • May 202215
  • April 202218
  • March 202214
  • February 202217
  • January 202216
  • December 202112
  • November 20219

Recent Posts

  • PaperNote

    Movie Gen:A Cast of Media Foundation Models

    2025-06-05

  • PaperNote

    NeurIPSw-2024 Mixture of Experts Enable Efficient and Effective Protein Understanding and Design

    2025-05-26

  • PaperNote

    NeurIPS-2023 Predicting a Protein’s Stability under a Million Mutations

    2025-05-23

  • PaperNote

    Scaling unlocks broader generation and deeper functional understanding of proteins

    2025-04-19

  • PaperNote

    Prot42:a Novel Family of Protein Language Models for Target-aware Protein Binder Generation

    2025-04-10

ACL-2020 Contrastive Code Representation Learning

Mar 25 PaperNote CL, SE Comments Word Count: 607(words) Read Count: 2(minutes)

2.1 探索性数据分析【stanford-cs329p】

Mar 24 stanford-cs329p Comments Word Count: 13(words) Read Count: 1(minutes)

1.4 数据标注【stanford-cs329p】

Mar 24 stanford-cs329p Comments Word Count: 563(words) Read Count: 2(minutes)

1.3 网页数据抓取【stanford-cs329p】

Mar 23 stanford-cs329p Comments Word Count: 308(words) Read Count: 1(minutes)

1.2 数据获取【stanford-cs329p】

Mar 23 stanford-cs329p Comments Word Count: 377(words) Read Count: 1(minutes)

DeepMind-2022 Competition-Level Code Generation with AlphaCode

Mar 23 PaperNote CL Comments Word Count: 1.3k(words) Read Count: 4(minutes)

1.1 课程介绍【stanford-cs329p】

Mar 22 stanford-cs329p Comments Word Count: 606(words) Read Count: 2(minutes)

ICML-2021 Evaluating Large Language Models Trained on Code

Mar 22 PaperNote CL, SE Comments Word Count: 1.6k(words) Read Count: 5(minutes)

NIPS-2018 Improving Language Understanding by Generative Pre-Training

Mar 21 PaperNote CL Comments Word Count: 880(words) Read Count: 3(minutes)

ICML-2019 Language Models are Unsupervised Multitask Learners

Mar 21 PaperNote CL Comments Word Count: 711(words) Read Count: 2(minutes)

  • Prev
  • Next
Page 21 of 27
Theme by cofess base on pure.